Predefined Functions and Operators
To create numbers, coordinates, or equations using the Input Bar you may also use the following pre-defined functions and operations. Logic operators and functions are listed in article about Boolean values.
The predefined functions need to be entered using parentheses. You must not put a space between the function name and the parentheses. |
Operation / Function | Input |
---|---|
ℯ (Euler’s number) |
Alt + e |
ί (Imaginary unit) |
Alt + i |
π |
Alt + p or pi |
° (Degree symbol) |
Alt + o or deg |
Addition |
+ |
Subtraction |
- |
Multiplication |
* or Space key |
Scalar product |
* or Space key |
Vector product(see Points and Vectors) |
⊗ |
Division |
/ |
Exponentiation |
^ or superscript ( |
Factorial |
! |
nPr(n, r) |
|
Parentheses |
( ) |
x-coordinate |
x( ) |
y-coordinate |
y( ) |
z-coordinate |
z( ) |
Argument (also works for 3D points / vectors) |
arg( ) |
Conjugate |
conjugate( ) |
real( ) |
|
imaginary( ) |
|
Absolute value |
abs( ) |
Altitude angle (for 3D points / vectors) |
alt( ) |
Sign |
sgn( ) or sign() |
Greatest integer less than or equal |
floor( ) |
Least integer greater than or equal |
ceil( ) |
Round to nearest integer (or to y decimal places) |
round(x) or round(x, y) |
Square root |
sqrt( ) |
Cubic root |
cbrt( ) |
The nth root of x |
nroot(x, n) |
Random number between 0 and 1 |
random( ) |
Exponential function |
exp( ) or ℯx |
Logarithm (natural, to base e) |
ln( ) |
Logarithm to base 2 |
log₂() or ld( ) |
Logarithm to base 10 |
log₁₀( ) or log( ) or lg( ) |
Logarithm of x to base b |
log(b, x ) |
Cosine |
cos( ) |
Sine |
sin( ) |
Tangent |
tan( ) |
Secant |
sec() |
Cosecant |
csc() or cosec() |
Cotangent |
cot() or cotan() |
Arc cosine (answer in radians) |
acos( ) or arccos( ) |
Arc cosine (answer in degrees) |
acosd( ) |
Arc sine (answer in radians) |
asin( ) or arcsin( ) |
Arc sine (answer in degrees) |
asind( ) |
Arc tangent (answer in radians, between -π/2 and π/2) |
atan( ) or arctan( ) |
Arc tangent (answer in degrees, between -90° and 90°) |
atand( ) |
atan2(y, x) |
|
atan2d(y, x) |
|
Hyperbolic cosine |
cosh( ) |
Hyperbolic sine |
sinh( ) |
Hyperbolic tangent |
tanh( ) |
Hyperbolic secant |
sech( ) |
Hyperbolic cosecant |
csch( ) |
Hyperbolic cotangent |
coth( ) or cotanh() |
Antihyperbolic cosine |
acosh( ) or arccosh( ) |
Antihyperbolic sine |
asinh( ) or arcsinh( ) |
Antihyperbolic tangent |
atanh( ) or arctanh( ) |
Beta function Β(a, b) |
beta(a, b) |
Incomplete beta function Β(x;a, b) |
beta(a, b, x) |
Incomplete regularized beta function I(x; a, b) |
betaRegularized(a, b, x) |
gamma( x) |
|
(Lower) incomplete gamma function γ(a, x) |
gamma(a, x) |
gammaRegularized(a, x) |
|
erf(x) |
|
psi(x) |
|
The Polygamma function is the (m+1)th derivative of the natural logarithm of the Gamma function, gamma(x) (m=0,1) |
polygamma(m, x) |
The Sine Integral function |
sinIntegral(x) |
The Cosine Integral function |
cosIntegral(x) |
The Exponential Integral function |
expIntegral(x) |
The Riemann-Zeta function ζ(x) |
zeta(x) |
Lambert’s W function LambertW(x, branch) |
LambertW(x, 0), LambertW(x, -1) |
The x, y, z operators can be used to get corresponding coefficients of a line. |