Assume Command
CAS Syntax
- Assume( <Condition>, <Expression> )
-
Evaluates the expression according to the condition
-
Assume(a > 0, Integral(exp(-a x), 0, infinity))
yields1 / a
. -
Assume(x>0 && n>0, Solve(log(n^2*(x/n)^lg(x))=log(x^2), x))
yields{x = 100, x = n}
-
Assume(x<2,Simplify(sqrt(x-2sqrt(x-1))))
yields-sqrt(x - 1) + 1
-
Assume(x>2,Simplify(sqrt(x-2sqrt(x-1))))
yieldssqrt(x - 1) - 1
-
Assume(k>0, Extremum(k*3*x^2/4-2*x/2))
yields \( \left\{ \left(\frac{2}{3 k}, -\frac{1}{3 k} \right)\right\} \) -
Assume(k>0, InflectionPoint(0.25 k x^3 - 0.5x^2 + k))
yields \( \left\{ \left(\frac{2}{3 k}, \frac{27k^{3} - 4}{27 k^{2}} \right) \right\} \)
See also Solve Command. |