Assume Command

CAS Syntax

Assume( <Condition>, <Expression> )

Evaluates the expression according to the condition

  • Assume(a > 0, Integral(exp(-a x), 0, infinity)) yields 1 / a.

  • Assume(x>0 && n>0, Solve(log(n^2*(x/n)^lg(x))=log(x^2), x)) yields {x = 100, x = n}

  • Assume(x<2,Simplify(sqrt(x-2sqrt(x-1)))) yields -sqrt(x - 1) + 1

  • Assume(x>2,Simplify(sqrt(x-2sqrt(x-1)))) yields sqrt(x - 1) - 1

  • Assume(k>0, Extremum(k*3*x^2/4-2*x/2)) yields \( \left\{ \left(\frac{2}{3 k}, -\frac{1}{3 k} \right)\right\} \)

  • Assume(k>0, InflectionPoint(0.25 k x^3 - 0.5x^2 + k)) yields \( \left\{ \left(\frac{2}{3 k}, \frac{27k^{3} - 4}{27 k^{2}} \right) \right\} \)

See also Solve Command.