CAS View Supported Geometry Commands

From GeoGebra 5 onwards, the Menu view cas.svg CAS View supports exact versions of the following Geometry Commands.

Exact Calculations

Command Tool Evaluate.gif Evaluate Tool Numeric.gif Numeric or Input, Rounding 2 Decimal Places

Angle[(1,0),(0,0),(1,2)]

\(arctan \left( 2 \right)\)

Numeric : 1.11 Input : 63.43° or 1.11 rad according Angle Unit selected

AngleBisector[(0,1),(0,0),(1,0)]

\(y = x\)

Numeric : \(y = x\) Input : \(- 0.71 x +0.71 y = 0\)

Circumference[x2+y2=1/sqrt(π)]

\(2 \; \sqrt{\pi \; \sqrt{\pi}}\)

4.72

Distance[(0,0), x + y = 1] Simplify[Distance[(0,0), x+y=1]]

\( \frac{1}{\sqrt{2}}\) \(\frac{\sqrt{2}}{2}\)

0.71

Distance[(0,0),x+2y=4] Simplify[Distance[(0,0),x+2y=4]]

\(\frac{4}{\sqrt{5}}\) \(4 \cdot \frac{\sqrt{5}}{5}\)

1.79

Distance[(0,4),y=x^2] Simplify[Distance[(0,4),y=x^2]]

\(\sqrt{ \left( \frac{7}{2} - 4 \right)^{2} + \left( -\frac{1}{2} \; \sqrt{14} \right)^{2}}\), \(\frac{\sqrt{15}}{2}\)

1.94

Distance[(0.5,0.5),x2+y2=1] Simplify[ Distance[(0.5,0.5),x2+y2=1]]

\(\frac{\frac{1}{\sqrt{2}}}{\sqrt{2}} \; \sqrt{ \left( -\sqrt{2} + 1 \right) \; \left( -\sqrt{2} + 1 \right) \; \sqrt{2} \; \sqrt{2}}\), \(\frac{-\sqrt{2} + 2}{2}\)

0.29

Ellipse[(2,1),(5,2),(5,1)]

\(28 \; x^{2} - 24 \; x \; y - 160 \; x + 60 \; y^{2} - 96 \; y + 256 = 0\)

Numeric : \(28 \; x^{2} - 24 \; x \; y - 160 \; x + 60 \; y^{2} - 96 \; y + 256 = 0\) Input : \(7 \; x^{2} - 6 \; x \; y + 15 \; y^{2} - 40 \; x + - 24 \; y = - 64\)

Ellipse[(2,1),(5,2),(6,1)]

\(32 \; x^{2} \; \sqrt{2} + 36 \; x^{2} - 224 \; x \; \sqrt{2} - 24 \; x \; y - 216 \; x \; ... \) \( \; ... + 32 \; \sqrt{2} \; y^{2} - 96 \; \sqrt{2} \; y + 256 \; \sqrt{2} + 68 \; y^{2} - 120 \; y + 196 = 0\)

Numeric : \(81.25 \; x^{2} - 24 \; x \; y - 532.78 \; x + 113.25 \; y^{2} - 255.76 \; y + 558.04 = 0\) Input : \(81.25 \; x^{2} - 24 \; x \; y - 532.78 \; x + 113.25 \; y^{2} - 255.76 \; y = - 558.04 \)

Radius[x2+y2=1/sqrt(π)]

\(\frac{\sqrt{\pi \; \sqrt{\pi}}}{\pi}\)

0.75

Symbolic Computations

Command Tool Evaluate.gif Evaluate Tool Numeric.gif Numeric

Circle[(a,b),r]

(y - b)² + (x - a)² = r²

Delete.png

Distance[(a,b),(c,d)]

\(\sqrt{ \left( b - d \right)^{2} + \left( a - c \right)^{2}}\)

\(\sqrt{a^{2} - 2 \; a \; c + b^{2} - 2 \; b \; d + c^{2} + d^{2}}\)

Distance[(a,b),p x + q y = r]

Line[(a,b),(c,d)]

\(y = \frac{x}{a - c} \; \left( b - d \right) + \frac{1}{a - c} \; \left( a \; d - b \; c \right)\)

\(y = \frac{a \; d - b \; c + b \; x - d \; x}{a - c}\)

Line[(a,b),y=p x+q]

\(y = p x - a p + b\)

\(y = -a p + b + p x\)

MidPoint[(a,b),(c,d)]

\( \left( \frac{a + c}{2}, \frac{b + d}{2} \right) \)

\( \left( 0.5 \; a + 0.5 \; c, 0.5 \; b + 0.5 \; d \right) \)

PerpendicularBisector[(a,b),(c,d)]

\(y = \frac{-a + c}{b - d} \; x + \frac{a^{2} + b^{2} - c^{2} - d^{2}}{2 \; b - 2 \; d}\)

\(y = \frac{a^{2} - 2 \; a \; x + b^{2} - c^{2} + 2 \; c \; x - d^{2}}{2 \; b - 2 \; d}\)