Coefficients Command
- Coefficients( <Polynomial> )
-
Yields the list of all coefficients \(a_k,a_{k-1},\ldots,a_1, a_0\) of the polynomial \(a_k x^k+a_{k-1}x^{k-1}+\cdots+a_1 x+a_0\).
Coefficients(x^3 - 3 x^2 + 3 x)
yields {1, -3, 3, 0}.
For non-polynomial curves obtained using one the fitting commands e.g. |
- Coefficients( <Conic> )
-
Returns the list of the coefficients a, b, c, d, e, f of a conic in standard form: \(a\cdot x^2 + b\cdot y^2 + c + d\cdot x\cdot y + e\cdot x + f\cdot y = 0\)
For a line in implicit form l: ax + by + c = 0 it is possible to obtain the coefficients using the syntax x(l), y(l), z(l). |
Given line l: 3x + 2y - 2 = 0
:
-
x(l)
returns 3 -
y(l)
returns 2 -
z(l)
returns -2
CAS Syntax
- Coefficients( <Polynomial> )
-
Yields the list of all coefficients of the polynomial in the main variable.
Coefficients(x^3 - 3 x^2 + 3 x)
yields {1, -3, 3, 0}.
- Coefficients( <Polynomial>, <Variable> )
-
Yields the list of all coefficients of the polynomial in the given variable.
-
Coefficients(a^3 - 3 a^2 + 3 a, a)
yields {1, -3, 3, 0}. -
Coefficients(a^3 - 3 a^2 + 3 a, x)
yields {a³ - 3 a² + 3 a}.