ExtendedGCD Command

CAS Syntax

ExtendedGCD( <Integer>,<Integer> )

Returns a list containing the integer coefficients s,t of Bézout’s identity as+bt=GCD(a,b) and the greatest common divisor of the given integers a and b. Results are calculated by applying the Extended Euclidean algorithm.

ExtendedGCD(240,46) yields {9,47,2}. (Plugging the result into the Bézout’s identity we have: 9240+4746=2).

ExtendedGCD( <Polynomial>, <Polynomial> )

Returns a list containing the polynomial coefficients S(x),T(x) of Bézout’s identity for polynomials A(x)S(x)+B(x)T(x)=GCD(A(x),B(x)) and the greatest common divisor of the given polynomials A(x) and B(x). Results are calculated by applying the Extended Euclidean algorithm.

ExtendedGCD(x^2-1,x+4) yields {1,x+4,15}. (Plugging the result into the Bézout’s identity for polynomials we have: 1(x21)+(x+4)(x+4)=15).

  • The GCD of two polynomials is not unique (it’s unique up to a scalar multiple).

  • See also GCD Command.