Extremum Command
This command differs among variants of English:
|
- Extremum( <Polynomial> )
-
Yields all local extrema of the polynomial function as points on the function graph.
Extremum(x³ + 3x² - 2x + 1)
creates local extrema (0.29, 0.70) and (-2.29, 9.30) and shows them in the
Graphics
View.
- Extremum( <Function>, <Start x-Value>, <End x-Value> )
-
Calculates (numerically) the extremum of the function in the open interval ( <Start x-Value>, <End x-Value> ).
Extremum((x⁴ - 3x³ - 4x² + 4) / 2, 0, 5)
creates local extremum (2.93, -16.05) in the given interval and shows
it in the
Graphics View.
The function should be continuous in [ <Start x-Value>, <End x-Value> ], otherwise false extrema near discontinuity might be calculated. |
CAS Syntax
- Extremum( <Function> )
-
Will attempt to return all local extrema of the function (which should be continuous and differentiable)
Extremum(x³ + 3x² - 2x + 1)
creates a list of the points and plots them \( \left\{ \left(\frac{-\sqrt{15}
- 3}{3}, \frac{10 \; \sqrt{15} + 45}{9} \right), \left(\frac{\sqrt{15} - 3}{3}, \frac{-10 \; \sqrt{15} +
45}{9} \right) \right\}\).
Assume(0 < x < 20, Extremum(15/2 * sin( 2/15*pi * x) + 56/5))
yields the local turning points in the range given
\( \left\{ \left(\frac{15}{4}, \frac{187}{10} \right), \left(\frac{45}{4}, \frac{37}{10} \right),
\left(\frac{75}{4}, \frac{187}{10} \right) \right\} \).