PathParameter Command
- PathParameter( <Point On Path> )
-
Returns the parameter (i.e. a number ranging from 0 to 1) of the point that belongs to a path.
Let f(x) = x² + x - 1
and and A is a point attached to this function with coordinates (1,1) (you can create such point using the point on object tool or A=Point(f)
, SetCoords(A,1,1)
commands). Then PathParameter(A)
yields a
= 0.47.
In the following table \(f(x)=\frac{x}{1+|x|}\) is a function used to map all real numbers into interval (-1,1) and \(\phi(X,A,B)=\frac{\overrightarrow{AX}\cdot\overrightarrow{AB}}{|AB|^2}\) is a linear map from line AB to reals which sends A to 0 and B to 1.
Line AB | \(\frac{f(\phi(X,A,B))+1}2\) |
---|---|
Ray AB |
\(f(\phi(X,A,B))\) |
Segment AB |
\(\phi(X,A,B)\) |
Circle with center C and radius r |
Point \(X=C+(r\cdot cos(\alpha),r\cdot sin(\alpha))\), where \(\alpha\in(-\pi,\pi)\) has path parameter \(\frac{\alpha+\pi}{2\pi}\) |
Ellipse with center C and semiaxes \(\vec{a}\), \(\vec{b}\) |
Point \(X=C+\vec{a}\cdot cos(\alpha)\vec{b}\cdot sin(\alpha)], where stem:[\alpha\in(-\pi,\pi)] has path parameter stem:[\frac{\alpha\pi}{2\pi}\) |
Hyperbola |
Point \(X = C \pm \vec{a} ·cosh(t) + \vec{b} ·sinh(t)\) has path parameter \( \frac{f(t)+1}{4}\) or \(\frac{f(t)+3}{4}\) |
Parabola with vertex V and direction of axis \(\vec{v}\). |
Point \(V+\frac{1}{2}p\cdot t^2\cdot \vec{v}+p\cdot t \cdot \vec{v}^{\perp}\) has path parameter \(\frac{f(t)+1}2\). |
Polyline A1…An |
If X lies on AkAk+1, path parameter of X is \(\frac{k-1+\phi(X,A,B)}{n-1}\) |
Polygon A1…An |
If X lies on AkAk+1 (using An+1=A1), path parameter of X is \(\frac{k-1+\phi(X,A,B)}{n}\) |
List of paths L={p1,…,pn} |
If X lies on pk and path parameter of X w.r.t. pk is t, path parameter of X w.r.t.L is \(\frac{k-1+t}{n}\) |
List of points L={A1,…,An} |
Path parameter of Ak is \(\frac{k-1}{n}\). Point[L,t] returns \(A_{\lfloor tn\rfloor+1}\). |
Locus |
|
Implicit polynomial |
No formula available. |