Números Complejos
GeoGebra no soporta números complejos directamente, pero se pueden utilizar puntos para simular las operaciones con complejos.
Si se introduce el número complejo 3 + 4ί en la Barra de entrada se obtendrá el punto (3, 4) en la Vista Gráfica. Las coordenadas de este punto se muestran como 3 + 4ί en la Vista Algebraica.
You can display any point as a complex number in the Algebra View. Open the Properties Dialog for the point and select Complex Number from the list of Coordinates formats on tab Algebra. |
The imaginary unit ί can be chosen from the symbol box in the Input Bar or written using Alt + i. Unless you are typing the input in CAS View or you defined variable i previously, variable i is recognized as the ordered pair i = (0, 1) or the complex number 0 + 1ί. This also means, that you can use this variable i in order to type complex numbers into the Input Bar (e.g. q = 3 + 4i), but not in the CAS.
Addition and subtraction:
-
(2 + 1ί) + (1 – 2ί)
gives you the complex number 3 – 1ί. -
(2 + 1ί) - (1 – 2ί)
gives you the complex number 1 + 3ί.
Multiplication and division:
-
(2 + 1ί) * (1 – 2ί)
gives you the complex number 4 – 3ί. -
(2 + 1ί) / (1 – 2ί)
gives you the complex number 0 + 1ί.
The usual multiplication |
The following commands and predefined operators can also be used:
-
x(w)
orreal(w)
return the real part of the complex number w -
y(w)
orimaginary(w)
return the imaginary part of the complex number w -
abs(w)
orLength[w]
return the absolute value of the complex number w -
arg(w)
orAngle[w]
return the argument of the complex number w
arg(w) is a number between -180° and 180°, while Angle[w] returns values between 0° and 360°. |
-
conjugate(w)
orReflect[w,xAxis]
return the conjugate of the complex number w
GeoGebra also recognizes expressions involving real and complex numbers.
-
3 + (4 + 5ί)
gives you the complex number 7 + 5ί. -
3 - (4 + 5ί)
gives you the complex number -1 - 5ί. -
3 / (0 + 1ί)
gives you the complex number 0 - 3ί. -
3 * (1 + 2ί)
gives you the complex number 3 + 6ί.