Commande Racine

Racine( <Polynôme f> )

Toutes les racines du polynôme f (en tant que points d’intersection de la courbe représentative avec l’axe des abscisses). (même si Racine est au singulier)

Racine(x^3 - 3 * x^2 - 4 * x + 12) crée les trois points (-2,0),(2,0) et (3,0).

Racine( <Fonction f >, <x initial> )

Une racine de f à partir de x initial par une méthode itérative.

Racine( <Fonction f>, <x min>, <x max>)

Une racine de f sur [min ; max] par une méthode itérative.

Soit f(x)=\(\frac{sin(x)}{x} \)

Racine(f) retourne le point d’intersection le plus à gauche dans la vue graphique.

Racine(f,2) retourne A=(π,0) (la première racine rencontrée à partir de 2)

Racine(f,2,7) fera de même

Racine(f,4,7) retourne C=(6.28,0) (la première racine rencontrée à partir de 4)

Tool tool.png Voir l' outil associé : Mode roots.svg Racines.

Menu view cas.svg Calcul formel :

Racine( <Polynôme f> )

Toutes les racines du polynôme f

Racine(x^3 - 3 * x^2 - 4 * x + 12) retourne la liste des trois racines {x = 3, x = 2, x = -2}.

Racine(fonction) n’est pas proposée, mais si on reprend l’exemple précédent, on a :

Soit f(x)=\(\frac{sin(x)}{x} \)

Racine(f) retourne la liste \(\{x = k_1 π\}\)

Cette commande n’est qu’une variante spéciale de la commande Résoudre.

Saisie : Voir aussi la commande : Racines.