Commande Spline
- Spline( <Liste de Points> )
-
Crée une cubique, définie par morceaux, passant par tous les points.
- Spline( <Liste de Points>, <Degré ≥ 3> )
-
Crée une spline, du degré indiqué, passant par tous les points.
Note : Le résultat de la commande L’algorithme est utilisé séparément pour les coordonnées x et y : d’abord, nous déterminons les valeurs de t qui correspondent aux points (basés sur des distances euclidiennes entre les points), puis nous exprimons les splines cubiques comme des fonctions t→ x et t→ y. |
Graphique 3D :
Cette commande fonctionne à l’identique dans la fenêtre Graphique 3D
== #[.3D.3D]==##
Spline( <Liste de Points>, <Degré ≥ 3>, <Fonction de poids> )
In the beta version we now have a syntax that lets you chose your own mapping from points to the parameter. The syntax is Spline[list of points, degree,function in x and y]. The last parameter says what should be the difference of t values for point P_i and P_\{i+1} given that their P_\{i+1}-P_i=(x,y). To get the spline you expect from "function" algorithm you should use abs(x)+0*y, to get the GeoGebra’s default spline you can use sqrt(x2+y2). You can also try 0x+0y+1. The advantage of euclidian distance is that the result behaves nicely with respect to transformations: rotate(spline(list)) gives the same as spline(rotate(list)). The function 0x+0y+1 has this property also
You can start with this file that shows the "manual" approach: