MatrixToepassen Commando
- MatrixToepassen( <Matrix>, <Object> )
-
Vormt het objectt O om zo dat een punt P van O afgebeeld wordt op:
-
punt M*P, waarbij P een 2D- punt is en een M een 2 x 2 matrix
-
M={{cos(π/2),-sin(π/2)}, {sin(π/2), cos(π/2)}}
is de transformatiematrix en u = (2,1)
een gegeven vector
(object). MatrixToepassen(M,u)
geeft de vector u'=(-1,2), dit is het resultaat van een rotatie over 90° van de
vector u.
-
punt project(M*(x(P), y(P), 1)), met P een 2D punt en M a 3 x 3 matrix: project is een projectie die het punt (x, y, z) afbeeldt op (x/z, y/z).
-
punt M*P, wanneer P een 3D punt is en M een 3 x 3 matrix
-
punt N*P, wanneer P een 3D punt is en M een 2 x 2 matrix: de matrix N is de uitbreiding tot orde 3 van M: M = \(\begin{pmatrix}a&b\\ c&d \end{pmatrix}\) dan is N = \(\begin{pmatrix}a&b&0\\ c&d&0\\0&0&1 \end{pmatrix}\)
M={{1,1,0},{0,1,1},{1,0,1}}
is een matrix en u=(2,1)
een gegeven vector. MatrixToepassen(M,u)
geeft
vector u'=(1,0.67). Inderdaad \(\begin{pmatrix}1&1&0\\ 0&1&1\\1&0&1 \end{pmatrix}\) \(\begin{pmatrix}2\\
1\\1 \end{pmatrix}\) = \(\begin{pmatrix}3\\ 2\\3 \end{pmatrix}\), en (3/3 = 1, 2/3 ≈ 0.67) (afgerond op 2
decimalen)
Dit commando werkt ook met Afbeeldingen. |