Polecenie Dwudziestościan

Dwudziestościan( <Trójkąt równoboczny> )

Tworzy dwudziestościan foremny, którego ścianą jest dany trójkąt równoboczny.

Dwudziestościan( <Punkt>, <Punkt>, <Kierunek> )

Tworzy dwudziestościan foremny, którego krawędzią jest odcinek łączący oba punkty. Pozostałe wierzchołki są jednoznacznie określone przez podany kierunek, który powinien być:

  • wektorem, odcinkiem, prostą lub półprostą prostopadłą do odcinka, lub

  • wielokątem albo płaszczyzną równoległą do odcinka. Utworzony ośmiościan będzie miał

  • ścianę z odcinkiem jako krawędzią leżącą na płaszczyźnie prostopadłej do danego wektora/odcinka/prostej/półprostej, lub

  • ścianę z odcinkiem jako krawędzią leżącą na płaszczyźnie równoległej do wielokąta/płaszczyzny.

Dwudziestościan( <Punkt>, <Punkt>, <Punkt>)

Tworzy dwudziestościan foremny, którego wierzchołkami są dane punkty. Punkty muszą być wierzchołkami trójkąta równobocznego, by ośmiościan był zdefiniowany.

Dwudziestościan( <Punkt>, <Punkt>)

Tworzy dwudziestościan foremny z dwoma (sąsiadującymi) wierzchołkami pierwszej ściany, a trzeci punkt jest automatycznie tworzony na okręgu, aby czworościan mógł obracać się wokół swojej pierwszej krawędzi.

Dwudziestościan(A, B) jest skróconą formą zapisu Dwudziestościan(A, B, C), gdzie C = Punkt(Okrąg(PunktŚrodkowy(A, B), Odległość(A, B) sqrt(3) / 2, Odcinek(A, B))).

Zobacz także polecenia Sześcian, Czworościan, Ośmiościan, Dwunastościan.